
hf. J. Heat Moss ikznufer. Vol. 31, No. 9. pp 1807-1814, 1988 

Printed in Great Britain 
0017-9310/88 $3.00+0.00 

Cm 1988 Pergamon Press plc 

The coupling of conduction with laminar natural 
convection along a flat plate 

A. POZZI and M. LUPO 

Istituto di Gasdinamica, Facolta di Ingegneria, University of Naples, Italy 

(Rrceiwd 23 November 1987 and infinal form 18 January 1988) 

Abstract-In this paper the entire thermo-fluid-dynamic field resulting from the coupling of natural 
convection along and conduction inside a heated flat plate is studied by means of two expansions. The first 
one, describing the field in the lower part of the plate, is a regular series the radius of convergence of which 
is determined by means of Pad& approximant techniques. The second expansion, an asymptotic one, 
requires a different analysis because of the presence of eigensolutions. The coupling of the two solutions 

is studied and comparisons with solutions existing in the literature are presented. 

1. INTRODUCTION 

AS POINTED out in ref. [I], when convective heat trans- 
fer depends strongly on the thermal boundary con- 
ditions, natural convection must be studied as a mixed 
problem if one needs an accurate analysis of the ther- 
mo-fluid-dynamic field. The phenomenon depends on 
several parameters: therefore in many cases this 
strong dependence does exist. 

In ref. [l] an analysis is given of the relative import- 
ance of the parameters of the problem in particular 
with reference to axial heat conduction. In ref. [2], by 
extending the analysis of Gosse [3], a technique is 
shown which improves the results given by the first 
term of an asymptotic expansion of the solution. In 
the same paper a new correlation for the evaluation 
of the heat transfer coefficient is also presented. 

This analysis holds for high values of the abscissa 
X; the value of the point x,, from which the expansion 
is valid depends on the parameters that govern the 
problem. 

In this paper we wish to give further contributions 
to the study of coupled natural convection by eval- 
uating the region which the point x,, falls in, improving 
the results concerning the asymptotic expansion by 
adding terms of higher order with respect to the first 
one, discussing the general form of the asymptotic 
expansion, which is singular for the presence of eigen- 
solutions, and determining the expansion holding for 
small values of .X in an accurate way. by evaluating 
many terms of the series and its radius of convergence 
by means of Pade approximant techniques. 

2. EQUATIONS AND BOUNDARY 
CONDITIONS 

In order to describe the steady two-dimensional 
flow due to the free convection along a side of a 
vertical flat plate of thickness b, insulated on the edges 
and with a temperature Th maintained on the other 

side (Fig. 1) one must solve the coupled thermal fields 
in the solid and in the fluid. The coupling conditions 
require that the temperature and the heat flux be con- 
tinuous at the interface. 

The temperature T,, in the solid is given by 

T,, = T(x, 0) - [Th - T(x, Wlylb (1) 

where T(x, 0) is the unknown temperature at the inter- 
face. 

The thermo-fluid-dynamic field in the fluid is 
governed by the boundary layer equations, which in 
non-dimensional form may be written as 

uu, + vU_~ = uYY + B ; u, + v, = 0 ; u0, + US, = 8,” /Pr 

(2) 

where u and v are the velocity components, 0 = 
(T- T, )/( T,, - Tuj) and Pr is the Prandtl number. 

The reference quantities are: L = v2/3/g”3 for x, 

W “4 for v and \vd ‘M for the stream function $ 
(U = I/+, z’ = - ij,), where d = (Th- T,)/?. 

As the problem of natural convection, for its para- 
bolic character, has no characteristic length, L has 
been defined in terms of v and g. which are intrinsic 
properties of the system. 

The reference length along the y-direction has been 
modified by a factor d- “4 in order to eliminate this 
quantity from the equations and boundary con- 
ditions. 

The heat flux continuity condition may be written as 

e(X, 0) - 1 = pt$(x, 0) (3) 

where 

p = d”4bAf/L*&. (4) 

The boundary conditions that, together with equa- 
tion (3), must be associated with system (2) are 

U(X,O) = V(X,O) = U(X, co) = 0(x, co) = 0 (5) 

U(0, y) = B(O,y) = 0. (6) 
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NOMENCLATURE 

b plate thickness Tb temperature at outside surface of the 

:j 
(Tb- Tco)/Tm plate 
functions occurring in the expansion i-S0 solid temperature 

ofti T, fluid asymptotic temperature 

f* eigensolution u, a velocity components 

F4 function defined by equations (21) x, y Cartesian coordinates as indicated in 

9 acceleration due to gravity Fig. 1 

9* eigensolution X0 coupling abscissa of the two solutions. 
Gr Grashof number, gdZ3/v2 

Hi functions occurring in the expansion Greek symbols 
of8 constant defined by equations (21) 

1 length of the plate ; volume thermal expansion coefficient 
L reference length, v213/g’13 0 non-dimensional temperature, 
m Px 

- 1,‘l 
(T- T,,)/(T*- T,) 

ml x~/5/p~/s %i functions occurring in the expansion of 0 

P coupling parameter, b&d ‘/4/Li, 04 function defined by equations (21) 
Pr Prandtl number if, I, fluid and solid thermal conductivities 
r radius of convergence of expansion (14) v kinematic viscosity 
T temperature $ stream function. 

x 

-1 

b 

T= rb 

0 
* 
Y 

FIG. 1. A vertical flat plate and coordinate system. 

3. SOLUTION METHOD 

The problem described in the previous section is 
governed by the coupling parameter p (equation (4)), 
the order of magnitude of which depends essentially 
on b/L and &/,I,, d’14 being of the order of unity. As 
L is small, b/L attains values much greater than one. 
When the fluid is air i,/l, reaches very small values if 
the plate is highly conductive and reaches the order 
of 0.1 for materials such as glass. Therefore, p is in 
many cases, but not always, a small number. An 
expansion in series based on the smallness of p may 
be written as follows. 

Let 2 = y/xJi4, and I// = x’l“j”(x, z). Then equations 
(2) and (3) become 

2frz-3ff?i;+4x(fif;~-f.~f::) = 4(e+fL> 

4x(%,f~-fxe~)-3fez = 4ezzlPr (7) 

where 

ecx, 0) - 1 = m%Z(x, 0) 63) 

I?1 = px- “4. (9) 

Boundary condition (8) suggests us to change vari- 
ables from x and z to m and z and to expand the 
functions f and B in a MacLaurin series with respect 
to m (m -+ 0 corresponds to x + co) thus writing 

f = f m%(z); e = f de,(z). (10) 
i= 0 i=O 

This form of the solution is not satisfactory every- 
where because m diverges for vanishing x. Hence this 
expansion does not hold at x = 0 and the initial con- 
ditions (6) cannot be satisfied. 

Moreover, the linearized problem presents eigen- 
values : such a circumstance, although it does not permit 
the use of an expansion in terms of m of the form of 
equations (lo), enables us to solve the problem of the 
initial conditions. It is necessary to modify this form 
and to give boundary conditions at .X = x,, > 0, 
according to equation (6). 

To obtain these new initial conditions a different 
expansion (initial expansion) valid for small values of 
x will be considered. 

Let s = Yl(PW, l,h = x4’5g(.L s)/p”5, %= 
X”5h(X, s)/p . ‘j5 Then equations (2) may be written as 

3g: - 4N.?.V + 5x(g.v 93% - 9.Y9.7,” ) = 5(h + 9. s,, ) 

hg,-4gh,+5x(g,h,-h,g,) = 5h,,lPr (11) 

and equation (3) becomes 

h,(x, 0) = m ,h(x, 0) - 1 (12) 
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where 

M, = +/p4/s. (13) 

By assuming m, and s as independent variables 
it is possible to expand the functions f and 6 in a 
MacLaurin series with respect to m, (m, = 0 cor- 
responds to x = 0) 

functions Pf = PN(x)/QM(x) where 

PN = _i: A,x”, QM = f B,X. (17) 
n=0 “=O 

Here &, may be set equal to 1 without loss of gener- 
ality. The M+N+ 1 coefficients may be determined 
so that the equation 

g= &z’,s,(s); h= f rn: h, (s) . (14) 
i=ll i=O 

In this way ifone assumes g;(a) = hj(co) = 0 initial 
conditions (6) are satisfied as well. Moreover, if x,, is 
a point of convergence of expansion (14) it is possible 
to obtain in this point the initial conditions for a 
correct expansion in terms of m (asymptotic expan- 
sion) 

is true up to the terms of order n. 
Once the B, coefficients are known it is possible to 

find the roots of QM. The root having the minimum 
modulus gives an approximation of the radius of con- 
vergence of the series. 

4. EXPANSION FOR SMALL x (INITIAL 

EXPANSION) 

The equations giving the functions g, and hi of 
expansion (14) are 

PadC approximants have been used in the study 
of many problems. In ref. [5] the impulsive flow past 
a cylinder is analysed by means of P::. In ref. [6] the 
laminar unsteady flow away from a plane stagnation 
flow is analysed by means of P::. 

We choose the diagonal sequence by assuming 
M = N. 

5g;“-6g;g,!+4(g;g;‘+g,g;‘) 

-i(g;g;-glg;)+5hi = A4t 

Sh,!‘/Pr--hog,!-hig;+4g,h,! 

+4g&-i(g’,hi-h;gi) = N, (15) 

where 

i-I 
Mj = C [3g;gj_, -4gjgjLj+j@Jg~_j -,CJjg~L,)] 

j- I 
1- I 

We have checked the reliability of the results by 
analysing the two expansions related to the wall tem- 
perature and to the drag coefficient (i.e. u,(x, 0)), for 
N varying between 4 and 28 in increments of 2. The 
two sequences for Pr = 0.733 give the following values 
for the radius of convergence r : 0.97, 1.05, 1.09, 1.11, 
1.13, 1.14, 1.15, 1.15, 1.15, 1.16, 1.16, 1.15, for the 
wall temperature expansion and 1.17, 1.17, 1.16, 1.16, 
1.16, 1.17, 1.16, 1.16, 1.15 for the drag coefficient 
expansion. Both sequences give a value of nearly 1.15 
for r. For Pr = 2.97 we find r = 1.65. 

Ni = C [h,gj_j -4gjh!_j +j(h,gj_j -gjhl_j)]. 
/= I 

The boundary conditions are 

g,(O) = g;(O) = g,:(co) = hi(a) = 0 

h;(O) = -1; h,!(O) = h;_,(O) (i > 0). (16) 

Equations (15) and (16) represent a standard boun- 
dary-value problem which can be easily solved 
numerically. The only difficulty with this expansion is 
the evaluation of its radius of convergence r(Pr). Such 
a function can be obtained by means of the technique 
of Fade approximants [4]. 

The behaviour of expansion (14) in the range (0, r) 
of m, confirms the value of r found in this way. In 
Table 1 the values of 8 are listed for N terms of the 
expansion and for Pr = 2.97 : m, = 1.3 corresponds 
to 0.b. For small values of m, a few terms are 
sufficient to obtain convergence, as m, approaches r 
the number of terms necessary to reach a good accu- 
racy increases rapidly. 

Hence in the range (0, r) for m, expansion (14) 
represents the solution of the problem well. 

5. EXPANSION FOR LARGE x (ASYMPTOTIC 

EXPANSION) 

Pade’s idea is to replace a MacLaurin expansion The solution for m, > r assumes a form different 
Za,$’ of a function f(x) by a sequence of rational from that expressed by expansion (10). 

Table 1. Values of 8, for Pr = 2.97, for several terms of the expansion 

m, = 0.574 rnl =0.910 m, = 1.045 WI, = 1.20 m, = 1.302 tn, = 1.44 M, = 1.56 

N=4 0.498 0.732 0.905 1.235 1.568 2.25 3.137 
N=6 0.490 0.630 0.687 0.780 0.876 1.101 1.441 
N=8 0.490 0.618 0.650 0.664 0.650 0.570 0.394 
N= 10 0.490 0.620 0.657 0.690 0.704 0.703 0.661 
N= 12 0.490 0.620 0.659 0.699 0.730 0.802 0.946 
N= 14 0.490 0.620 0.658 0.693 0.712 0.728 0.723 
N= 16 0.490 0.620 0.658 0.693 0.711 0.717 0.667 
N= 17 0.490 0.620 0.658 0.693 0.714 0.739 0.762 
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In fact if one substitutes this expansion into equa- 
tions (7) one finds at the leading order the following 
system : 

2f,‘*- 3fJ/’ = 4(U, +f;“) 

- 3f00b = 4O;'lPr 

fo(O) = fb'(O) = fd(a) = 0 

O,(O) = 1, O,(co) = 0 

and at the ith order 

(18) 

40~'/Pr+3f00~+3f,0,'+i(f~0,-O,'f,)= T, 

fi(O) = f,'(O) = f,'(a) = 0 

where 

O)(O) = o;_ j(O) ; O,(co) = 0 (19) 

i-I 

si = C [2f;fi'-,-3f,f:', -i(fJf :-j-_fjfl’j)l 
j=1 
i-1 

iy = c [-j(ojf:_j-f,o:_,)-3f;o:_j]. 
j= I 

(20) 

Equations (19) present eigensolutions. 
The first one appears in expansion (10) for i = 4, 

for linearized equations (19) admit an eigensolution. 
In fact equations (2) are unchanged by a translation 
of the origin of the x-axis and their solutions do not 
change in form when .x is substituted for x-x,,. If one 
expands Jl(x, y, x,,) and 0(x, y, x,,) in powers of x0, by 

writing W,Y,X,,) = x”*[$&,Y) +x,lcI,(x,y)l and 
0 = 0,(x, y) +x,0,(x, y), one finds that II,, and 0, may 
be written as (l/x)F,(r) and (l/x)G,(z). As this solu- 
tion holds for any x,,, F, and G, represent an eigen- 
solution. In particular one finds 

F, = (3/4)f,-(1/4)zf;; G, = -(1/4)zO; 

where f ,, and O. are given by the leading-order term in 
expansion (10). Functions F, and G, satisfy equations 
(19) with i = 4 and S, = T, = 0. 

Then the first four terms in expansion (10) can be 
determined by means of equations (19) (the presence 
of the first eigenvalue does not permit the solution of 
equations (19) for i = 4) and the solution can be writ- 
ten in the form 

f = c m%(z)+m4Q(m,z) 
i=o 

0 = i m’O,(z) frn4R(rn, z) (10’) 
I=0 

where functions Q(m, z) and R(m, z) are not analytic. 
Both Q and R may be represented by suitable 

expansions. To estimate the leading terms of such 
expansions, say F,(m,z) and O,(m,z), we can write 
equations (lo’) as follows : 

f = $ mifi(z)+m4F4(m,z)+o(m4) 
z=o 

0 = i m'0,(z)+m404(m,z)+o(m4) (10”) 
z=o 

where o(m") denotes terms of order smaller than m4. 
In order to determine F, and 0, we substitute these 

expressions in equations (7) and (8) and neglect the 
terms of o(m4), obtaining for F4 and 0, the following 
equations and boundary conditions : 

4F4ZZZ+3(F4fd'+F4Z,f0)+mfdF4,1 

-(4F4+mF4,)f;'+40, 

(4/Pr)04,+(404+m04m)fd-(4F4+mF4,)Od 

+3(F,Od+@,:f,)= T, 

O,(m,O) = O;(O) 

where S, and T4 are defined by equations (20). 

These equations may be satisfied by letting 

F4(m,z) = f4,Az)+af2(z)logm 

O,(m,z) = 04,(z)+a04*(z)logm 

= 
s4 

(7’) 

(8’) 

(21) 

where f:(z) and O:(z) represent a particular eigen- 
solution of system (7’) i.e. satisfy equations (7’) with 
the right-hand sides S, and T4 vanishing, with the 
homogeneous boundary conditions F,(m, 0) = 

F,,(m,O) = O,(m,O> = F,,(m,co) = e4(m,co) = 0, 

and a is a constant to be determined later. 

In order to calculate f 4p and 0, we write equations 
(7’) and the pertinent boundary conditions taking 
into account equations (21) to obtain 

4f~~'+404p+3f~f~~-fdff4p = S4+aS,, 

40~/Pr+Oof&,-foO&p+30;lf4p= T,+aT,, (22) 

f4p(O) = f@) = f&(a) = 0 (23) 

O,(O) = K(O), 04Jco) = 0 (24) 

where 

S14(z) = f:'fO-f.?fd'; 7-,4(z) = O,*f;-f,*O;. 

It must be noted that the terms containing log m dis- 
appear because fz and 0: are solutions of the equa- 
tions. 

The boundary conditions at infinity may be satisfied 
by giving suitable values to coefficients C and a in the 
expressions 

f4, = cf40+f41 +af42i 0, = C040+041+ao42 

where f40 and O,, represent a solution of the homo- 
geneoussystem(22)with fa(0) = f&,(O) = O,,(O) = 0. 

(f:;(O) and O&,(O) may be given arbitrary values), f4, 

and 04, and f4* and 042 are solutions of equations (22) 
when the right-hand sides are S4 and T, and S, 4 and 
T ,4, respectively, with f 4i(0) = f ii(O) = O,,(O) = 0 ; 
O,,(O) = O;(O) (f:;(O) and O&,(O) may be given arbi- 
trary values). 

In this way we have found two functions F4 and 
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0, of expansion (10”) satisfying all the conditions 
regarding the y-coordinate. 

It must be noted that F4 and O4 are not completely 
determined because the functions Fz = F4 + Afz and 
@t = 0,-t AOg, where A is an arbitrary constant, also 
satisfy the system (7’), (8’) and the remaining con- 
ditions on the y-coordinate, since ft and 0,* are eigen- 
solutions of the problem. 

The constant A cannot be determined without 
knowing all the terms of the expansion of functions 
Q(m, z) and R(m, z) of which F4 and 0, represent the 
leading terms. 

Both Q and R may be split in two parts. The first 
one yielding 

Q = F4(m,z)+mF,(m,z)+... 

R = O,(m,z)+mO,(m,z)+. r. 

(where Fi and Oi contain logarithmic terms in m) 

enables us to satisfy equations (7) and all the con- 
ditions on the y-coordinate, but not the conditions on 

the x-coordinate which are satisfied only up to third 
order. 

The second one may be obtained from an expansion 
off and 0 in the eigenfunctions of the problem and 
enables us to satisfy the conditions on the x-coor- 

dinate stemming from the coupling of the asymptotic 
solution with the initial one at a suitable value of 
x = x0. 

The eigenfunctions have the form (l/~)~f,(z), 

(l/x)‘YJ,(z), where q is a real parameter which takes 

on eigenvalues. 
The first eigenvalue of q for any Pr is 1 ; the second 

one for Pr = 2.97 is 2.2, and for Pr = 0.73 it is 2.4. 
This second expansion can be obtained by standard 

methods: in the next section we shall give an esti- 
mation of constant A appearing in its leading term. 

6. RESULTS AND DISCUSSION 

The results have shown that the number of terms 
necessary to represent the initial solution satisfactorily 

in the range (0, x,), with -x0 corresponding to a value 
of m equal to 0.8r (r being the radius of convergence), 
is 17. At x = x0, in the considered case, the asymptotic 
solution is represented well by means of four terms. 

For Pr = 0.733, 1.15, 2.97, 7.2, 13.6 the radii of 
convergence of the initial expansion are 1.16, 1.36, 
1.65, 2.03, 2.29, respectively. 

The values at y = 0 of the first few terms of the 
initial and asymptotic expansions are listed in Tables 
2 and 3. 

In order to compare our results with those of ref. 
[2] we consider a plate with length I and define a 
Grashof number according to its length; moreover, 
letting K = i,f/&b, we can write m = Gr”4/(x/E) I, 4K 

and m, = K415(x/I) “‘/Gr”‘. We assume for Gr the 
value of 109. 

Table 2. Initial expansion : values of g:(O) and h,(O) 

n g:(o) 
Pr = 0.733 Pr = 2.97 

h,(O) g:(o) h,K’) 

0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

I .540 2.042 
- 1.641 -3.083 

l.624 3.789 
- 1.371 -3.886 

9.453 x lo-’ 3.322 
-4.840 x lo-’ 2.298 

1.210 x 10-I 1.172 
7.296 x 1O-2 -2.853 x 10-l 

- 1.095 x IO-’ -1.844x 10-l 
5.699 x IO-2 2.68l x 10-l 
7.548 x 1O-3 - 1.632 x 10-l 

-3.774 x lo-’ -2.162 x IO-2 
2.901 x IO-’ 9.333 x 10-2 

-3.509 x 10-3 -6.994 x lo-’ 
-1.454x 10-2 7.013 x IO-3 

I s34 x IO-” 3.632 x IO-’ 
-4.697 x 10-3 -3.719 x 10”’ 
-5.632 x 1O-3 1.069 x lo-? 

9.194 x 10-l 1.411 
-6.799 x IO-’ - 1.481 

4.498 x 10-l 1.271 
-2.787 x IO-’ -9.147 x 10-l 

1.360 x 10-l 5.512 x IO-’ 
-4.992 x lo-’ -2.704 x 10-l 

9.470 x IO-) 9.896 x lo-’ 
3.295 x 1O-3 -1.827x IO-* 

-3.895 x IO-3 -6.959 x lo-’ 
1.570 x 10-I 7.875 x lo-3 
2.823 x 1o-5 -3.093 x IO-3 

-4.462 x 1O-4 - 1.190 x IO-4 
2.770 x 1O-4 9.216 x IO-4 

-4.674 x 10-5 -5.541 x 10-4 
-5.389 x 10m5 8.412 x 1O-5 

4.985 x 10-5 1.142 x 10-4 
- 1.571 x 1o-5 - 1.011 x 10-j 
-5.706 x 1O-6 3.016 x lO-5 

n 

Table 3. Asymptotic expansion : values of f;‘(O) and 0,(O) 

Pt = 0.733 Pr = 2.97 
f.“(O) Rxo) f;‘(o) em 

0 9.532 x 10-l -3.591 x 10-l 7.522 x IO-’ -5.749 x lo-’ 
1 -2.908 x IO-’ I.315 x 10-l -3.693 x 10-l 3.414 x IO_ 
2 1.143 x lo-’ -3.593 x lop2 2.392 x IO-’ - 1.545 x 10-l 
3 -4.128 x IO-’ 3.845 x 10-8 - 1.515 x 10-l 8.482 x 10m7 

HHT 31:9-E 
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* - Third approximation 

0 
0.40 

---- First approximation 

I; * Ref. [21 

oloo 
x/l 

FIG. 2. Non-dimensional temperature at the wall 0(x,0) in 
the asymptotic solution for Pr = 2.97, K = 500, Gr = 109. 

In Figs. 2 and 3, 0, evaluated by means of the 
asymptotic expansion, is plotted vs x/l for K = 500 
and 1000 and Pr = 2.97 together with the results of 
ref. [2]. One can see that the first approximation is not 
very accurate for the lower value of K: an improve- 
ment is obtained by means of the technique of ref. [2]. 
As K increases, the differences between the first and 
the third approximation become smaller. 

To compare the two expansions we have considered 
0 and uv at the wall as a representation of the thermal 
field and of the fluid-dynamic field. The number of 
terms of the initial expansion is 17. In Figs. 4 and 5 
the case K = 500, Pr = 2.97 is drawn. In Fig. 4 the 
dashed curve, corresponding to the asymptotic solu- 
tion for 0, diverges for x + 0 and differs appreciably 
from the initial one up to x/Z = 0.05. For higher values 
of x/l one sees that the two curves are very close to 
each other. The value of x/l corresponding to the 
largest abscissa of convergence of the initial expansion 
is roughly 0.19 ; hence in the range (0.05, 0.19) both 
expansions seem to hold. A similar behaviour is dis- 
played in Fig. 5, but for the considered number of 
terms the two curves stay very close in a shorter range. 

* 
m' 

c.40 
t - Third approximation I 

0 C.20 0.40 0.60 0.80 I .a0 

X/l 

FIG. 3. Non-dimensional temperature at the wall @(x,0) in 
the asymptotic solution for Pr = 2.97, K = 1000, Gr = 109. 

6 
2 0.40 - Initial solution 
m ---- Asymptotic solution 

0 

FIG. 4. Non-dimensional temperature at the wall 0(x. 0) for 
Pr = 2.97, K = 500. 

In both cases the value of x0/l = 0.06. corresponding 
to a value of m, = 0.8r, is a suitable starting point for 
the asymptotic expansion. 

In Figs. 6 and 7 the curves for the case of K = 250 
and Pr = 2.97 are drawn. For these values x,/l > 1. 
Therefore, in the whole range (0,l) the thermo-fluid- 
dynamic field is governed by the initial solution. The 
figures show an appreciable difference between the 
dashed curve (asymptotic solution) and the solid 
curve (initial solution) for both functions. 

In Figs. 8 and 9 the curves relating to K = 250 and 
Pr = 0.733 are drawn. In this case x,/l = 0.26. The 
comparison with Figs. 6 and 7 shows that the lower 
value of Pr makes the difference between the two 
solutions very small, except for vanishing values of s. 

The previous analysis enables one to obtain the 
solution of the problem in the entire field using the 
initial solution for 0 < x < x,, and the asymptotic 
solution for x > x0. x0 is the starting point of the 
asymptotic solution and the velocity and temperature 
profiles obtained from the initial solution represent 
the initial conditions for the asymptotic solution. 

According to the analysis presented in the previous 
sections the difference between the two solutions at 
x = x0 must be of the order of magnitude of m4: 

- Initial solution 
Asymptotic solution 

FIG. 5. cQx.0) for Pr = 2.97, K = 500 
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o^ 0 
0.60 
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0 Q 0.40 - Initial solution 

I - Initial solution ---- Asymptotic solution I 
---- Asymptotic solution 
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0 0.20 0.40 0.60 0.80 1.00 
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FIG. 6. Non-dimensional temperature at the wall 0(x, 0) for 
Pr = 2.97. K = 250. 

in fact we have taken into account the terms of the 
asymptotic expansion up to the third order. Figures 
4-9 confirm such behaviour. 

Therefore, when m&J is not too high, as in the 
considered cases, the approximation in which terms 
of order m4 are neglected is satisfactory. 

To obtain higher approximations one must con- 
sider a new expansion in terms of eigenfunctions, 
starting from order m4. 

The fourth-order solution can be uniquely deter- 
mined by the standard procedures that require an 
analysis of the eigenfunctions. 

An idea of the magnitude of the fourth-order terms 
can be obtained by assuming &x,0) and z+(x,O) as 
representative of the thermo-fluid-dynamic field. We 
consider the case Pr = 2.97 and K = 500, illustrated 
in Figs. 4 and 5. 

Taking into account equations (21) the fourth- 
order terms may be written in the form F4 + Af: and 
O,+AB,*, respectively, for functions f and 0, where 
A is a free constant. As it turns out that, 0, and 0: 
are vanishing at y = 0, one can evaluate A by equating 
the values of uv obtained by means of the two solutions 
at x = x0. Thus one finds for A the value 3.016. In Fig. 

5 0 48 - 

*' 

2 

I I I I I 
0 0.20 0.40 0.60 0.80 1.00 

x/l 

FIG. 7. U&C, 0) for Pr = 2.97, K = 250. 

0.20 

t 

I I I I 
0 0.10 0.20 0.30 0.40 0.50 

X/l 

FIG. 8. Non-dimensional temperature at the wall 0(.x, 0) for 
Pr = 0.733. K = 250. 

10 the initial solution is compared with the asymptotic 
one, accurate to fourth order. One can see that the 
two curves are nearly coincident for 0 < x < x,,. 

In this way one obtains that the initial value given 
to u,(x, 0) in the asymptotic solution, is the exact one 
while 0(x,, 0) assumes in both the third- and fourth- 
order asymptotic solution the value of 0.706 instead 
of 0.714. 

The differences between the values given by the 
two solutions for other functions characterizing the 
profiles, such as 

display the same order of magnitude. 

7. CONCLUDING REMARKS 

In this paper some aspects of the coupling of con- 
duction inside and laminar convection along a vertical 
flat plate have been analysed. 

As the thermo-fluid-dynamic field for x + co is that 
of isothermal flat plate flow while for x -+ 0 it is that 
of the constant heat flux flat plate flow, two expan- 

064- 

- Initial solution 

---- Asymptotic solution 

I I I I 
ci 0.10 0.2c 0.30 0.40 c 

X/l 

FIG. 9. z&x, 0) for Pr = 0.733, K = 250. 

i0 
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0.50, 

0.40 - /-- - 
_- _ 

5 0 30- 

c 

z 
u.20 - 

terms of this expansion present eigensolutions, the 
first of which appears at the fourth order. 

It was possible to match the two solutions at a 
suitable abscissa .x0 by taking into account the first 
four terms of the asymptotic solution. Moreover, the 
improvement obtainable by adding the fifth term of 
the expansion, including the first eigensolution, was 
estimated. 

- Initial solution 

---- Asymptotic solution 
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COUPLAGE DE LA CONDUCTION ET DE LA CONVECTION NATURELLE 
LAMINAIRE LE LONG DUNE PLAQUE PLANE 

R&m&On etudie par la methode des diveloppements le champ thermofluido-dynamique qui resulte du 
couplage de la convection naturelle et de la conduction dans une plaque chaude. Le premier dtveloppement 
qui decrit le champ dans la partie inferieure de la plaque est une strie reguliire dont le rayon de convergence 
est determine au moyen des techniques de Pad& Le second dheloppement de type asymptotique necessitt 
une analyse differente a cause de la presence des valeurs propres. Le couplage des deux solutions est Ctudie 

et on prtsente des comparaisons avec des solutions deja existantes. 

DIE KOPPLUNG VON WARMELEITUNG UND LAMINARER NATURLICHER 
KONVEKTION LiiNGS EINER EBENEN PLATTE 

Zusammenfassung-Dieser Beitrag handelt von der Untersuchung des gesamten thermo-fluid-dynamischen 
Problems, das sich aufgrund der Kopplung von natiirlicher Konvektion langs einer beheizten ebenen Platte 
und der Wlrmeleitung in ihrem Innern ergibt. Die erste von zwei Reihenentwicklungen, welche das Problem 
im unteren Teil der Platte beschreibt, ist eine regelmiBige Reihe, deren Konvergenzradius mittels Pade- 
Approximations-Techniken bestimmt wurde. Die zweite Entwicklung, eine asymptotische, erfordert auf- 
grund des Vorhandenseins von Eigenlosungen eine andere Analyse. Es wurde die Kopplung der beiden 

Lijsungen untersucht und Vergleiche mit in der Literatur vorliegenden Liisungen dargelegt. 

B3AHMHOE BJIURHHE TEI-IJIOHPOBO~HOCTI4 II JIAMHHAPHOB ECTECTBEHHOR 
KOHBEKHHH BAOJIb IIJIOCKOfi I-IJIACTHHbI 

AIIBOT~I.UX~--C noMombro ABYX pa3noXens8 nccnenyeTcr nonnoe repMonznpon~naMu9ecKoe none, 
n03mixaromee B pe3ynbTaTe CBII3H eCTeCTBeHHOii KOHBeKunn BAOJib narperoti nXXxol nnacrmibr n Ten- 
,3OnpOBOAHOCTH B Heti. HepBOe pa3JiOXeHHe &3X nOna B HuXHe% YaCTB nJiaCTBHbI npeACTaBJtaeT co6oi-r 
perynnpubtii part, panwyc cxo~ri~ocrn rcoroporo onpenenrercr Merortob4 annpoxcwbfaurin Hane. 
BTOpoe pasnomeawe, RBJunomeecII aCHMnTOTH4eCK&iM, Tpe6yeT UHOr0 nOXxOAa H3-3a HaJtnYBII CO6CT- 
aeriubtx pememifi. Mccnenyercr n3aubnioe anmnnie ~THX a~yx pememiii B naercn cpamienae c nMerouau- 

b4ncn B nnreparype pememinMn. 


